Categorie: Volkskrant

Om de 5 jaar gelukkig

Een collega puzzelt al weken op zijn planning voor de kerstdagen. Hij vroeg of ik een wiskundige oplossing had. Hoe plan je familiebezoeken en kerstdiners zodat iedereen tevreden is?

Het probleem is dat dit al snel over een heleboel mensen gaat. Neem een echtpaar dat graag een kerstdiner wil organiseren met hun drie volwassen kinderen. Die kinderen hebben elk een partner en die partners hebben ouders die ook een kerstdiner willen plannen. Nu gaat het al over zeven gezinsagenda’s. Daarbij komen dan weer broers en zussen kijken, die op hun beurt ook weer partners met ouders hebben, die weer andere kinderen hebben, enzovoorts. Voor je het weet ben je honderden agenda’s op elkaar aan het afstemmen.

Helaas bestaat er geen handig wiskundig schema waarmee iedereen altijd tevreden is. De kunst is om de ontevredenheid op de een of andere manier te minimaliseren. Een stel informatici boog zich over dit probleem in The Family Holiday Gathering Problem. Aan het begin van dit artikel merken de auteurs voorzichtig op dat zij met hun achtergrond niet geschikt zijn om de sociale en psychologische problemen rond familiebijeenkomsten op te lossen. Hoe ongeschikt ze daarvoor zijn, blijkt even later als ze vrolijk opmerken dat broers en zussen die met elkaar trouwen hun probleem alleen maar vereenvoudigen.

Enfin. Deze onderzoekers nemen aan dat ouders gelukkig zijn als ze met al hun kinderen tegelijk feest vieren. Het doel is om te zorgen dat het aantal achtereenvolgende feestdagen dat ouders ongelukkig zijn zo klein mogelijk is. Ze streven daarbij naar een vast schema, dat zich elke zoveel jaar herhaalt, zodat iedereen weet waar hij aan toe is.

Stel dat je zo’n schema maakt voor een groep ouders, waarbij de het grootste gezin vier kinderen heeft. Dan kun je altijd een oplossing vinden waarbij elk stel ouders om de vijf jaar gelukkig is. Maar is dat eerlijk voor ouders in deze groep die maar één kind hebben? Zou het niet beter zijn om de kans op een compleet gezin met kerst af te laten hangen van het aantal kinderen?

Uiteindelijk komen de auteurs tot een oplossing. Alleen snap ik na drie keer lezen nog steeds niet hoe ik die zou moeten uitvoeren in mijn familie. En zelfs al ik het zou snappen, dan zou ik de moed niet hebben om de moeder van mijn zwager te bellen om haar uit te leggen wat voor schema ik heb voor haar familie.

In het vrolijke zelfhulp boek The Life-Changing Magic of Not Giving a F*ck komt auteur Sarah Knight met een eenvoudige persoonlijke variant. Elk jaar moesten zij en haar man kiezen uit drie familiebijeenkomsten, tot ze een paar jaar terug besloten om het domweg te gaan rouleren. Elke bijeenkomst doen ze nu eens in de drie jaar en daar valt niet over te onderhandelen (de titel van haar boek geeft al aan hoe de auteur reageert als mensen hier boos om worden).

Ten slotte hebben logici nog een elegante oplossing voor als je gescheiden ouders hebt die niet met elkaar praten. Je zegt tegen elk van hen dat je dit jaar de complete kerst bij de ander viert. Vervolgens boek je een reis naar de Canarische eilanden en ligt op eerste kerstdag lekker in het zonnetje.

Deze column verscheen eerder in de Volkskrant

3x zo groot

Op weg naar mijn werk fiets ik langs een poster voor mega-M&M’s die ‘3x zo groot zijn’. De rest van de dag zit ik achter mijn bureau en denk aan chocolade. Dit schreeuwt om nader onderzoek. Wat zou er bedoeld worden met ‘3x zo groot’? Is de diameter drie keer zo groot? Of het totale ding?

Dat maakt namelijk nogal uit. Laten we even aannemen dat een M&M een kubus is. Een totaal onrealistische aanname, maar een beetje wiskundige laat zich daardoor niet uit het veld slaan. Bovendien maakt deze versimpeling het rekenwerk makkelijker, waardoor het onderliggende principe duidelijk wordt.

Als we beginnen met een kubus met ribben van één centimeter, dan is de inhoud van die kubus één kubieke centimeter. De oppervlakte is zes vierkante centimeter (want er zijn zes zijvlakken). Als we nu deze kubus ‘3x zo groot maken’ door elk van de ribben op te rekken naar drie centimeter, dan krijgen we een kubus met een volume van zeventwintig kubieke centimeter en een oppervlakte van vierenvijftig vierkante centimeter (zes maal negen).

Korte samenvatting voor wie de draad inmiddels helemaal kwijt is: als je een kubus vergroot door elke ribbe drie keer zo lang te maken, dan wordt het volume zeventwintig keer zo groot en de oppervlakte negen keer zo groot. Dus als je dingen vergroot, neemt het volume sneller toe dan de oppervlakte, zoals Galileo Galilei in 1638 al opmerkte.

Terug naar de chocolade. Ik haalde twee zakken M&M’s: de mega en gewone. De mega zijn overigens alleen verkrijgbaar zonder pinda, wat goed uitkomt, want ik houd niet van pinda’s. Ik legde meetlint, weegschaal en maatbekers klaar om ze eens grondig te analyseren. De diameter van de normale versie is pakweg dertien millimeter. De megaversie ziet eruit als een kleine ufo en heeft een diameter van ongeveer twintig millimeter. Dat is dus niet drie keer zo groot, maar ongeveer anderhalf.

Dan het gewicht: de normale wegen iets minder dan één gram. De mega zijn per stuk zo’n 3,2 gram. Dat is dus méér dan drie keer zo groot. Tenslotte moest ik het volume bepalen. Dat kan heel moeizaam door de hoogte te meten en een formule voor het volume van afgeplatte chocoladebollen te bepalen. Gelukkig had ik die maatbekers al klaargezet. Laagje water erin, chocolaatjes erbij en je kunt superhandig aflezen hoeveel het volume stijgt, zoals Archimedes zo’n 2.200 jaar geleden al opmerkte.

De mega’s hebben een volume van zo’n 2,5 milliliter (oftewel 2,5 kubieke centimeter). Bij de normale blijken er drie in 2,5 milliliter te gaan. De ‘3x zo groot’ van de reclame gaat blijkbaar over het volume.

Hoe kan het dan dat ze iets meer dan drie keer keer zo zwaar zijn? Waarschijnlijk komt daar dat verschijnsel van Galileo om de hoek. De mega’s hebben in verhouding minder oppervlakte en dat is waar het gekleurde suikerlaagje zit. Zou dat laagje misschien een lagere dichtheid hebben dan chocolade? Dit alles vraagt om nog meer onderzoek.

Een ander idee voor een vervolgstudie: normaal staat mega voor een factor miljoen (denk aan megawatt, dat is een miljoen watt). Dus ik hoop dat er binnenkort echte mega-M&M’s van duizend kilo komen. Ik offer me wel om op eraan te rekenen.

Deze column verscheen eerder in de Volkskrant

74% van de ruimte

Twee weken terug schreef ik hier over M&M’s. Sommige lezers mopperden dat de onderwerpen in deze rubriek wel erg frivool waren en dat zij liever iets lazen over moeilijke wiskundige problemen. Speciaal voor hen deze week een technisch stukje over een klassiek vraagstuk (mét een heuse voetnoot). En goed nieuws voor de rest: het gaat aan het einde ook weer over M&M’s.

Het klassieke vraagstuk gaat over bolstapelingen. In 1587 staarde ontdekkingsreiziger Walter Raleigh naar een piramidevormige stapel kanonskogels (je moet toch iets als je wekenlang op een schip naar Amerika zit). Raleigh vroeg zich af hoe je snel kon berekenen hoeveel kogels er in de totale stapel lagen. Zijn wiskundige assistent Thomas Harriot gaf hem de formule daarvoor. [1]

Zoals het zo vaak gaat met wiskundigen, begon Harriot zich heel andere dingen af te vragen over de stapel kanonskogels. Hoe groot waren de gaten tussen de kogels? En kon je de bollen misschien efficiënter opstapelen? Harriot speelde zijn ideeën door naar de Duitse wiskundige Johannes Kepler die in 1611 het vermoeden formuleerde dat het niet beter kon dan de gebruikelijke manier van stapelen. Elke andere schikking van even grote bollen zou gemiddeld meer ruimte ongebruikt laten.

Deze gebruikelijke stapeling heeft een ingewikkelde naam, maar je ziet hem regelmatig bij de sinaasappels op de markt. De sinaasappels liggen in een zeshoekige regelmaat en de volgende laag komt steeds in de kuiltjes van die eronder. Deze manier van stapelen vult iets meer dan 74% van de ruimte en Kepler dacht dus dat het niet efficiënter kon. Als je bollen bijvoorbeeld willekeurig in een vat gooit en een beetje schudt, gebruiken ze slechts pakweg 64% van de ruimte.

Nu volgt een flinke sprong in de tijd: in 1998 kwam er eindelijk iemand met een bewijs voor het vermoeden van Kepler. En wat voor bewijs. Thomas Hales gebruikte een computerprogramma dat losse gevallen controleert en zijn bewijs was zo gigantisch dat het controleren onmogelijk bleek. Na vier jaar zwoegen, concludeerde een team van wiskundigen dat zijn werk voor 99% zeker klopte en met die kanttekening is het gepubliceerd.

En dan komen nu weer die M&M’s. Terwijl wiskundigen ploeterden op dat bewijs van het vermoeden van Kepler, kreeg natuurkundige Paul Chaikin van zijn studenten een olievat vol M&M’s. Hij praatte namelijk nogal vaak over hoe lekker hij die snoepjes vond. De natuurkundige was verbaasd over hoeveel M&M’s er in dat vat zaten. Uiteindelijk liet hij een student metingen doen en tot hun verbazing bleken de snoepjes 68% van de ruimte te bezetten: meer dan de 64% die bollen in een vergelijkbare situatie zouden innemen. Chaikin en zijn collega’s gingen een stap verder en ontwierpen afgeplatte bollen die zelfs 74% van de ruime innemen als je ze lukraak in een vat strooit. Dat is dus net zo efficiënt als die keurig gestapelde bollen van Kepler: een wiskundige doorbraak die daarnaast leidde tot nieuwe inzichten in de materiaalkunde. De resultaten verschenen in 2004 in wetenschappelijk toptijdschrift Science.

De belangrijkste conclusie hieruit is dat een stapel kanonskogels of een olievat vol M&M’s kunnen leiden tot nieuwe inzichten en dat geen onderwerp te frivool is om goed over na te denken.

[1.] In een piramidevormige stapel met als basis een gelijkzijdige driehoek met zijde n liggen natuurlijk n x (n + 1) x (n + 2)/6 kogels.

Deze column verscheen eerder in de Volkskrant

120 km/uur

‘Als wiskundige ben je de hele dag bezig om niet te struikelen over je eigen onvermogen om de dingen niet letterlijk te nemen.’ Aldus Jan Beuving vorige week tijdens een try-out van zijn nieuwe programma Raaklijn. Beuving studeerde af als tekstschrijver aan de Koningstheateracademie, maar daarvóór voltooide hij een wiskunde-studie. En dat laat zijn sporen na.

Zo is Beuving het soort artiest dat voor de zekerheid opzoekt wat de definitie van cabaret is. Volgens cabaretgrootheid Wim Ibo blijkt dat: een literair-muzikale kunstvorm, in een intieme omgeving, voor een ontwikkeld publiek. Beuving gaat de eisen na: hij heeft al wat literair-muzikale dingen gedaan, hij staat die avond in het intieme Pepijn, het enige dat hij nog nodig heeft is een ontwikkeld publiek.

Ik snap zijn behoefte aan heldere definities goed en ook de wanhoop als dingen niet kloppen. Zo vertelt Jan Beuving hoe verwarrend de snelweg is voor een wiskundige. Bijvoorbeeld als je in een honderd-kilometer-per-uur-zone rijdt en er ineens een bord langs de kant van de weg staat met: ‘Vanaf hier mag u 120 km/uur’. Dat kán dus niet. Want volgens de regels mag je tot dat bord niet harder dan honderd kilometer per uur. Je mag pas vanaf het bord versnellen, dus het duurt al snel honderd meter voor je de 120 km/uur kunt bereiken. Dus hadden ze dat bord beter een stukje verderop neer kunnen zetten. (Voor lezers die willen mailen dat dit idee niet werkt: het was een grap. Voor een ontwikkeld publiek.)

Er is nóg een probleem op de snelweg. Je hebt zones waar je overdag 120 km/uur mag en vanaf zeven uur ’s avonds 130 km/uur. Beuving vertelt hoe hij met zijn vader om kwart voor zeven zo’n zone inreed, waarop zijn vader verzuchtte: ‘Het is toch jammer dat we hier niet een kwartier later rijden, dan mochten we 130 en waren we eerder thuis.’ Waarop de zaal hard moet lachen, maar Beuving moppert dat híj dit soort dingen allemaal moet narekenen.

Vervolgens zit ik dit als ik weer thuis ben óók na te rekenen. Hoe lang moet een weg zijn zodat het verschil tussen 130 km/uur en 120 km/uur minstens een kwartier tijdwinst oplevert? Het antwoord blijkt 390 kilometer: die afstand kost bij 130 km/uur drie uur en bij 120 km/uur precies een kwartier meer. Dus als de weg langer is dan 390 kilometer, boek je meer dan een kwartier tijdwinst. Maar wacht, dat is helemaal niet de juiste som. Als je om kwart voor zeven met 120 km/uur begint, mag je na een kwartier ook 130 km/uur. De grap was ingewikkelder dan ik dacht en ik ben weer eens over mijn eigen onvermogen gestruikeld.

Eigenlijk doe ik Jan Beuving hiermee tekort, want de grappen die ik noem waren niet eens zijn beste van de avond. Zo was er bijvoorbeeld een magnifiek lied over de laatste stelling van Fermat waarin hij heldhaftig rijmt op ‘de nogal Frans geïnspireerde rijmklank -ah.’ Wie dat wil zien, moet vooral eens zelf naar het theater voor een avond cabaret zoals Wim Ibo het bedoeld heeft. Er zijn weinig dingen waar ik jaloers op ben, maar het talent van Jan Beuving is er één van.

Deze column verscheen eerder in de Volkskrant

180 gram

Als een bedankje voor een lezing kreeg ik een chocoladereep van Tony’s Chocolonely in de smaak puur-rozemarijn-sinasappel. Nog exotischer dan die combinatie van ingrediënten was de verdeling van de reep in schots en scheve brokken. Waar een doorsnee chocoladereep verdeeld is in keurige rechthoekjes, bestaat Tony’s reep uit een verzameling van brokken van verschillende grootte. Op de wikkel leggen de makers uit dat ze dit doen om de koper erop te wijzen dat het in de chocoladeketen heel ongelijk verdeeld is (lees: veel producenten knijpen cacaoboeren uit) en dat hun merk ervoor strijdt dat iedereen krijgt waar hij recht op heeft.

Leg dat maar eens uit aan een kind dat zeurt dat zijn broer een groter stuk chocolade kreeg. “Ja, lieverd. Rijkdom is ook oneerlijk verdeeld in de wereld. En die kindjes in Afrika zouden al lang blij zijn als ze een keer een stukje chocolade kregen.”

Tony’s chocoladereep is 180 gram, juist zo’n elegant gewicht, want het is in hele grammen eerlijk te verdelen onder één, twee, drie, vier, vijf of zes mensen. Zou je de ongelijke brokken misschien zo kunnen verdelen dat iedereen in een groep evenveel chocolade krijgt? Een medewerker van Tony stuurt me een handig overzichtje met de gewichten van alle stukjes. De grootste brok met het logo komt op 33 gram, een rondje is acht gram en een smal rechthoekje tien gram. Verder zijn er vooral veel kleinere stukken van vier of vijf gram. Als ik de gewichten aan het turven ben, zie ik dat het totale gewicht 179 gram is. Ai, mailt de Tony-man. Dat zal wel iets met afronding zijn, en natuurlijk vallen de losse stukken soms net een gram zwaarder of lichter uit. De hele reep zal heus altijd rond de 180 gram zijn. Alles goed en wel, maar met theoretische stukken die tot 179 gram optellen valt er weinig eerlijk te delen. Dat gewicht is namelijk een priemgetal dat alleen maar deelbaar is door één en zichzelf.

tony

Toch laat het probleem me niet los, wat zijn de ideale stukken bij een reep van 180 gram? Het mooiste zijn zestig stukken van elk drie gram, want dan kun je delen met zijn tweeën (elk 90 gram), drieën (ieder 60), vieren (elk 45), vijven (ieder 36) en zessen (elk 30). Alleen zijn de losse stukjes dan wel erg klein, bij Tony’s is het kleinste stuk vier gram. Maar met allemaal dezelfde stukken van minstens vier gram gaat het delen nooit lukken. Bestaat er een oplossing met ongelijke stukken waarmee je wél eerlijk kunt delen?

Ik puzzel een middag met potlood en papier, maar kom er niet uit. Ik vraag programmeerheld Heinze Havinga of hij me wil helpen (in ruil voor een reep chocolade). Ruim twee weken en een hoop noest rekenwerk later meldt hij juichend dat hij een oplossing heeft. Een reep met stukken van 5,5,6,8,8,9,9,10,15,16,17,20,22 en 30 gram is eerlijk te delen met één tot en met zes personen. (Wie de verdelingen wil uitpuzzelen: het is handig om te beginnen met zes groepjes van elk dertig gram.)

Dus Tony’s Chocolonely: ik adviseer jullie om in de toekomst deze fantastische verdeling te gebruiken in jullie chocoladerepen. Dan laten jullie zien dat het weliswaar oneerlijk verdeeld is in de wereld, maar dat je desondanks tóch eerlijk kunt delen.

Deze column verscheen op 14 november 2015 in de Volkskrant
Lees hier deel 2 van dit bericht.

180 gram (deel 2)

Een paar weken terug schreef ik hier over de chocoladerepen van Tony’s Chocolonely met hun schots en scheve brokken. Ik vroeg me af of een reep van 180 gram in ongelijke stukken te verdelen was op zo’n manier dat je de reep eerlijk kon delen met twee, drie, vier, vijf of zes mensen. De stukken moesten in hele grammen zijn en minstens vier gram wegen (want niemand zit te wachten op piepkleine stukjes chocolade). Om met drie mensen te delen moest je met de losse brokken bijvoorbeeld drie groepjes van elk zestig gram kunnen vormen, voor vijf mensen had je dan weer vijf groepjes van 36 gram nodig. Mij lukte het niet om een verdeling te vinden die in alle combinaties werkte en ik vroeg hulp aan Heinze Havinga. Hij maakte een computerprogramma om een oplossing te zoeken en na flink wat bruut rekenwerk meldde hij dat 5,5,6,8,8,9,9,10,15,16,17,20,22 en 30 gram een werkende verdeling is. Het kón dus wel, een oneerlijke verdeelde chocoladereep, waarmee je toch eerlijk kunt delen. Ik was reuzeblij, maar u – de lezer- was niet erg onder de indruk.

Sterker nog, u bedolf me onder uw eigen oplossingen, vaak vergezeld van enig hoongelach. Kees Bleijberg meldde een beetje verbaasd dat hij met een computerprogramma miljoenen oplossingen had gevonden, had hij de vraag soms niet goed begrepen? Diverse anderen vroegen of ik echt niet gezien had dat een reep met vier keer dertig, vier keer negen en vier keer zes gram keurig aan alle voorwaarden voldoet? Ik voelde me weer even als de student die ná het tentamen beseft hoe eenvoudig de gestelde vraag eigenlijk was.

14289102304_16bd4e2c31_b

Gelukkig vrolijkte ik snel op van al uw reacties waarin u spontaan op zoek ging naar ingewikkeldere verdelingen. Wie heeft er nu zulke slimme en enthousiaste lezers? Luuk Seelen meldde dat ik hem vier willekeurige getallen tussen 4 en 26 mocht geven en en dat hij een verdeling kon construeren die al mijn gekozen getallen bevatte. Dat kon hij inderdaad (met slim werken vanuit die vier maal 6-9-30-reep van hierboven).

Anderen mopperden dat mijn oplossing lelijk was, omdat er verschillende stukken met hetzelfde gewicht in zaten. Zij zochten een verdeling waarbij elke brok een andere grootte heeft. Prachtig was bijvoorbeeld de oplossing van René van der Aa: stukken van vijf tot en met negentien gram. Anderen zochten naar een verdeling met een zo klein mogelijk aantal verschillende brokken. Dic Sonneveld vond bijvoorbeeld deze oplossing in twaalf delen: 8,10,11,12,13,14,16, 17, 18, 19, 20 en 22 gram. Diverse lezers bewezen dat er geen oplossingen met elf verschillende stukken kan bestaan.

Guus Broekhuijsen stuurde misschien nog wel de allermooiste verdeling in. Hij tekende hoe je met de wat saaie reep met stukken van 6, 9 en 30 gram één grote reep kunt maken die je voor verschillende groepen in rechthoekige repen kunt verdelen. Of je nu met 2, 3, 4, 5 of 6 mensen bent: iedereen krijgt zijn eigen rechthoekige mini-reep.

Kortom: opties te over voor Tony’s Chocolonely als ze eens een nieuwe verdeling voor hun repen maken. Helaas liet de chocolademaker weten dat zo’n nieuwe vorm niet zo 1, 2, 3 gedaan is.

Deze column verscheen op 2 januari 2016 in de Volkskrant
Lees hier deel 1 van dit bericht.

2015

Het is een beetje pijnlijk om toe te geven voor iemand die een rubriek over getallen schrijft, maar dit jaar leerde ik dat cijfers en feiten er voor de meeste mensen helemaal niet zoveel toe doen. Eigenlijk zou ik hier het liefst precies schrijven voor hoeveel procent van de bevolking cijfers er in welke mate toe doen, maar daarmee blijk ik dus een grote uitzondering te zijn.

Jarenlang dacht ik dat het grote probleem met cijfers was dat ze onduidelijk waren, verkeerd gebruikt, niet goed uitgelegd, of alledrie tegelijk. Maar dit jaar zag ik langzaam in dat het allemaal veel ingewikkelder ligt. Het viel me bijvoorbeeld steeds vaker op bij het vluchtelingendebat dat je met wel met cijfers kon komen, maar dat het uiteindelijk draaide om een gevoel.

new-years-eve-2015-583232_960_720

Ook las ik dit jaar een overzichtsstudie over verschillende manieren van communiceren. Logisch-wetenschappelijke communicatie is gebaseerd op feiten en logische redeneringen. Dit leek mij de beste manier om uit te leggen hoe dingen in grote lijnen zitten. Een anekdote is geen bewijs, harde gegevens wil ik zien.

Maar in verhalende communicatie draait het juist om anekdotes en verhalen, van waaruit iemand zelf het grotere plaatje moet afleiden. En nu blijkt uit diverse onderzoeken dat die tweede manier van communiceren veel beter werkt. Het is makkelijker om de boodschap in de vorm van een verhaal te onthouden dan als droge feiten. Mensen zien daarnaast de kern van een anekdote als een even grote waarheid als een puur feitelijk relaas. Ineens begreep ik hoe zinloos het is om gewapend met een berg cijfers en wetenschappelijke studies in debat te gaan met iemand die zegt: “Mijn dochter wordt altijd zó druk van suiker.”

Een bevriende huisarts moest heel erg lachen toen ik haar over mijn nieuwe inzicht vertelde. Zij wist dit al lang. Als zij een patiënt wil overtuigen dat een bepaalde behandeling verstandig is, dan vertelt ze niet dat 95% van de patiënten daar baat bij heeft. Ze zegt ook niet dat het risico op bijwerkingen slechts 2% is. Nee, ze vertelt dat ze laatst een andere patiënt had met precies dezelfde problemen en dat de behandeling bij hem supergoed werkte: hij loopt inmiddels weer fluitend rond.

De doodsteek voor mijn cijferliefde kwam van een Brits rapport over hoe consumenten kijken naar antibiotica-resistentie. Het eerste slechte nieuws was dat de geïnterviewden geen idee hadden wat het probleem überhaupt is: ‘Het klinkt als iets dat verzonnen is.’ Als ze iets langer nadachten over wat het zou kunnen zijn, dan was het meest gegeven antwoord ‘dat je lichaam immuun raakt voor antibiotica als je die pillen te vaak slikt’. Oei: het probleem bij antibiotica-resistentie is juist dat bacteriën ongevoelig raken voor medicijnen. Het Britse rapport beschreef ook verschillende manieren om duidelijk te maken hoe gevaarlijk dit is. Deelnemers kregen te horen dat antibiotica-resistentie inmiddels jaarlijks wereldwijd 700.000 jaarlijks doden kost en dat er in de toekomst zelfs 10 miljoen kunnen zijn. De reacties waren onderkoeld: ’Ik denk niet dat het mij overkomt’ of ‘Ik geloof het niet, dat zijn wel heel veel mensen, alleen door bacteriën’. Ook andere feiten maken weinig indruk: ‘Zolang ik geen persoonlijk verhaal hoor, betrek ik het niet op mezelf.’

De les is duidelijk. In 2016 zal ik met nog meer anekdotes strooien om mijn getallen aan de man te brengen.

Dit bericht verscheen op 24 december 2015 in de Volkskrant

4 Dieren (deel 2)

Mijn puzzel van vorige week heeft heel wat losgemaakt. Op het schoolplein, in de supermarkt, op feestjes: overal werd ik aangesproken over giraffen en jakhalzen. Trotse ouders vertelden dat hun puberzoon de hele middag had zitten puzzelen, een ander echtpaar kreeg dan weer slaande ruzie omdat ze het niet eens waren over de oplossing. De hoogste tijd dus voor het goede antwoord.

Even ter herhaling: een slimme egel kwam in de mist vier dieren tegen. De jakhals die altijd liegt, de leeuw die de waarheid spreekt, de papegaai die het laatste antwoord herhaalt (als hij als allereerste is, zegt hij willekeurig “ja” of “nee”) en de giraffe die eerlijk antwoord geeft op de vorige vraag (en de eerste keer zegt hij willekeurig “ja” of “nee”).

De egel wil uitzoeken wie waar staat en vraagt hen eerst één voor één: “Ben jij de jakhals?”. Daarna weet ze alleen waar de giraffe staat. Dan vraagt ze de vier dieren in dezelfde volgorde “Ben jij de giraffe?” en ontdekt waar de jakhals staat. De egel weet nog niet de complete volgorde en vraagt aan het eerste dier: “Ben jij de papegaai?” Zodra dit dier “ja” zegt weet de egel precies wie waar staat. En hiermee kunnen wij blijkbaar ook uitzoeken hoe het dit, dus daar gaan we.

Op de vraag “Ben jij de jakhals?” zullen zowel de liegende jakhals als de eerlijke leeuw “nee” antwoorden. Wat de giraffe en de papegaai zeggen, kunnen we in principe niet weten. Maar omdat de egel na deze eerste vraag weet waar de giraffe staat, moet hij zich verraden door “ja” te zeggen nadat iemand anders “nee” heeft gezegd. We weten hierdoor dat de giraffe niet vooraan kan staan.

Op “Ben jij de giraffe?” zal de liegende jakhals “ja” antwoorden. De leeuw zegt “nee” en de giraffe ook, want die zit met zijn hoofd nog bij de vorige vraag. De papegaai herhaalt deze ronde het antwoord dat hij als laatste hoorde. Na alle vier de antwoorden weet de egel de plek van de jakhals, maar wij schieten hier weinig mee op en gaan snel door naar de volgende vraag.

Op “Ben jij een papegaai?” zal de leeuw ontkennend antwoorden, dus hij kan niet op de eerste plek staan. Zowel de giraffe als jakhals zullen “ja” zeggen. Maar de egel krijgt extra informatie van het antwoord van het eerste dier terwijl ze al weet waar de jakhals staat. Dus kan de jakhals óók niet vooraan staan. We wisten van de eerste vraag dat de giraffe niet vooraan staat, dus moet het enige overgebleven dier daar staan: de papegaai. Omdat die papegaai op de derde vraag “ja” zegt, moet er op de laatste plek een dier staan dat bij tweede vraag “ja” antwoordde. Dat kan alleen de jakhals zijn.

Er zijn nu nog twee mogelijke volgordes: papegaai – giraffe – leeuw- jakhals of papegaai – leeuw – giraffe – jakhals. Om te bedenken wat de juiste is, moeten we ons verplaatsen in het hoofd van de egel, dit is de lastigste stap. Stel eens dat de leeuw op de derde plek staat, dan moet de egel op de eerste vraag: nee-ja-nee-nee gehoord hebben. Zodra zij weet waar de giraffe en de jakhals staan, zou ze kunnen beredeneren dat de leeuw op de derde plek moet staan (want hij papegaaide het antwoord niet bij de eerste vraag). Dan zou ze dus helemaal geen derde vraag nodig hebben. Omdat ze die wel stelt, is de enige juiste volgorde papegaai – leeuw – giraffe – jakhals. Hulde voor wie dat de afgelopen week zelf ook had uitgepuzzeld.

Dit bericht verscheen op 20 juni 2015 in de Volkskrant

Lees hier deel 1 van dit bericht.

4 Dieren

Vorige week kreeg ik van verschillende kanten een raadsel opgestuurd over Hannah met een zak gele en oranje snoepjes. Het bleek een som uit een Brits examen die furore maakte op internet omdat hij zogenaamd absurd moeilijk was (ik vond hem eerder absurd dan moeilijk en ga hem daarom niet eens herhalen).

De afgelopen maanden doken er steeds dit soort sommen op: allemaal nogal lastig en stuk voor stuk bedoeld voor kinderen in één of ander buitenland. Terwijl wij al lang blij zijn als we zelf een beetje fatsoenlijk kunnen vermenigvuldigen, doen Vietnamese achtjarigen blijkbaar fluitend helse getallen-kruiswoord-raadsels en herleiden Singaporese pubers vrolijk wanneer Cheryl jarig is uit een reeks cryptische aanwijzingen. Dit laatste raadsel haalde in april zelfs De wereld draait door en Matthijs van Nieuwkerk keek licht wanhopig toen een scholier van het Team Nederlandse Wiskunde Olympiade de oplossing uitlegde. Voor wie het gemist heeft: Cheryl gaf twee vrienden een lijst met mogelijke data van haar verjaardag en vertelde de één de maand en de ander de dag. Vervolgens volgde er een gesprekje met uitspraken als “Ik weet niet wanneer Cheryl jarig is, maar ik weet dat de ander het ook niet weet”, waarna de heren én slimme puzzelaars konden uitvogelen wat Cheryls verjaardag was. Zelf dacht ik hierbij vooral dat Cheryl eens wat minder moeilijk zou moeten doen als ze cadeautjes voor haar verjaardag wilde.

Toch wil ik niet achterblijven bij deze kleine wiskundige hype en daarom presenteer ik deze week één van de aardigste raadsels die ik in tijden tegenkwam. De Amerikaanse wiskundige Tanya Khovanova vond deze opgave in het Russische jongerentijdschrift Kvantik en vertaalde hem op haar fijne weblog. Het is een variant op raadsels met mensen die alleen liegen of de waarheid spreken, maar dan met vier grappige dieren:

* De jakhals liegt altijd.
* De leeuw spreekt altijd de waarheid.
* De papegaai herhaalt het laatst gegeven antwoord. Als de papegaai als allereerste aan de beurt is, dan kiest hij willekeurig “ja” of “nee”.
* De giraffe is een beetje sloom en geeft eerlijk antwoord op de vórige vraag die je hem stelde. De eerste keer zegt hij willekeurig “ja” of “nee”.

Een slimme egel komt de vier dieren tegen in de mist en kan niet goed zien wie wie is. Ze besluit uit te zoeken in welke volgorde de dieren staan. Eerst vraagt ze hen één voor één: “Ben jij de jakhals?”. Na de antwoorden weet de egel alleen waar de giraffe staat. Daarna vraagt zij iedereen in dezelfde volgorde “Ben jij de giraffe?”. Nu ontdekt ze waar de jakhals staat. Maar ze heeft het plaatje nog steeds niet compleet en vraagt daarom aan het eerste dier: “Ben jij de papegaai?”. Zodra dit dier “ja” zegt, weet de egel precies wie waar staat. Kunt u dat nu ook uit puzzelen?

Volgende week geef ik hier het antwoord. U hoeft uw oplossing niet op te sturen, want er valt niets te winnen. Behalve dan een gevoel van diepe voldoening als u er zelf uitkomt en dus in elk geval niet stommer bent dan Russische scholieren.

Dit bericht verscheen op 13 juni 2015 in de Volkskrant

Lees hier deel 2 van dit bericht.

1729

Een paar weken terug liet ik hier terloops vallen dat mijn lievelingsgetal 1729 is en diverse lezers smeekten om meer uitleg. Hierbij dan. Ik houd van dit getal omdat er maar liefst twee fantastische anekdotes over zijn. De eerste gaat over de Britse wiskundige G.H. Hardy en het Indiase getallenwonder Srinivasa Ramanujan. Aan het begin van de twintigste eeuw haalde Hardy de jongere Ramanujan naar Cambridge. Daar werd Ramanujan ziek en Hardy nam een taxi naar het ziekenhuis om hem te bezoeken. Toen Hardy binnenkwam, grapte hij dat hij Ramanujan wilde opvrolijken met het nummer van zijn taxi, maar dat het helaas een nogal saai getal was: 1.729. Waarop de doodzieke Ramanujan zonder met zijn ogen te knipperen antwoordde dat 1.729 juist ge-we-ldig was: namelijk het kleinste getal dat je op twee manieren als de som van tweede derde machten kunt schrijven. (Voor de liefhebbers: je kunt het splitsen in 1.728 + 1 en in 1.000 + 729.)

Wat deze anekdote laat zien, is dat je overal schoonheid kunt vinden als je heel erg van iets houdt. De achterliggende emotie is vergelijkbaar met vogelaars die een quetzal spotten of een verzamelaar die een zeldzame single van The Beatles vindt. Dankzij Ramanujan is 1.729 een iconisch getal voor wiskundigen.

En er is dus nóg een anekdote over dit op het eerste gezicht wat saaie getal. De natuurkundige Richard Feynman ontmoette eens een man die telramen verkocht en beweerde dat hij met zijn abacus sneller kon optellen dan wie dan ook. Feynman nam de uitdaging aan en verloor flink. De verkoper riep trots dat hij ook héél snel kon vermenigvuldigen. Nu eindigde Feynman vlak achter hem, tot lichte verbazing van de verkoper. Normaal won hij namelijk ruim. Daarna deden ze een deling en eindigden ze gelijk. De verkoper was verbouwereerd, hoe kon iemand met pen en papier net zo snel zijn als hij met zijn wonderbaarlijke telraam? Wraakzuchtig riep hij: “Nu doen we derdemachtswortels!”, wetend dat dit enorm lastig is om met pen en papier te doen.

De verkoper schreef een willekeurig getal op: 1.729,03 en ging als een bezetene aan de slag met zijn abacus. Terwijl hij ploeterde, zat Feynman even rustig na te denken. De natuurkundige schreef vrij snel 12 op en even later maakte hij daar 12,002 van. De verkoper kwam moeizaam werkend kniet verder dan 12,01 en droop verslagen af.

Nu had Feynman heel veel geluk met het getal dat de verkoper koos. De natuurkundige wist uit zijn hoofd dat 12 de derdemachtswortel is van 1.728 en leerde daarnaast tijdens zijn studie een truc om handig om te gaan met de overgebleven rest van 1,03. Toen hij dit later nog eens probeerde uit te leggen aan de verkoper, ontdekte Feynman dat de man niet eens wist dat 3 de derdemachtswortel van 27 is. Sterker nog, de snelrekenaar snapte niets van getallen, hij kon alleen heel handig zijn telraam bedienen. Feynman concludeerde dat het beter is om iets langzamer te rekenen, maar wél precies te weten wat je doet. Ook daaraan denk ik vaak als ik mijn lievelingsgetal zie.

Het allerleukste aan “mijn” getal is echter is dat ik het er zo vaak over heb dat mijn vrienden inmiddels regelmatig om 17.29 uur even aan me denken en me een lief berichtje sturen.

Dit bericht verscheen op 20 december 2014 in de Volkskrant.