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We discuss two models of interpersonal interactions with delay. The first model is linear,
and allows the presentation of a rigorous mathematical analysis of stability, while the sec-
ond is nonlinear and a typical local stability analysis is thus performed. The linear model is
a direct extension of the classic Strogatz model. On the other hand, as interpersonal rela-
tions are nonlinear dynamical processes, the nonlinear model should better reflect real
interactions. Both models involve immediate reaction on partner’s state and a correction
of the reaction after some time.

The models we discuss belong to the class of two-variable systems with one delay for
which appropriate delay stabilizes an unstable steady state. We formulate a theorem
and prove that stabilization takes place in our case. We conclude that considerable (mean-
ing large enough, but not too large) values of time delay involved in the model can stabilize
love affairs dynamics.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

1.1. Delay in human emotions

In psychology of emotion, this formation of emotion is described by so-called differential emotions theory (DET) in which
forming an emotion can be modeled by a dynamics of a system undergoing neurohormonal, motoric and experiential pro-
cesses [1]. The core assumption in DET is that small set of emotions are primary and independent: joy, interest, sadness, fear,
surprise and disgust [2]. These are independent because they achieve consciousness rapidly and automatically, and influence
subsequent perception and cognition. The second important claim is that these emotions are discrete (associated with a spe-
cific neuromuscular pattern of facial movements) and distinguishable. Individual emotions also undergo interactions with
other emotions in order to form emotion patterns that stabilize over repetitions and time and refer to compound emotions.
Thus, single emotions are both the product and the subject of system organization. The systems are self-organizing in the
sense that recursive interactions among component processes generate emergent properties.

There are two groups of compound emotions in terms of time necessary for the system to form them. First group is emo-
tions that can be both close to immediate, or delayed: anxiety, anger, irritability, guilt, feeling overwhelmed, grief, hopeless-
ness. However, there is also a group of emotions that are always delayed because it takes long for the system to reach them:
feeling abandoned, resentment, feeling of alienation, withdrawal, numbness, depression.
. All rights reserved.
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1.2. Modeling of interpersonal relationships

Understanding the dynamics of marriage or other close personal relationships is a goal of various sociological and socio-
psychological studies, including studies based on the mathematical sociology approach. Numerous papers presenting
dynamical systems describing such relationships can be found, cf. e.g. [3,4,5,6,7,8,9,10,11,12,13,14,15,16,17]. Furthermore,
in 1994 Gottman et al. published the text-book focused on that problem, where they used mathematical modeling in the
description of different types of marriage and divorce prediction. Typically, the discrete dynamical systems approach is used
in this type of modeling, focusing on nonlinear dynamics of interactions. However, continuous dynamical systems can be
used as well, not excluding linear ODEs systems.

Models describing social interactions between agents using systems of ordinary differential equations (ODEs), especially
derived from the game theory, are quite common nowadays, cf. the classic text-book of [18] or article by Axelrod [19] and the
references therein. Also models describing human interactions as a process of responsive behavior has been considered by
Platkowski and Poleszczuk [20]. In this section, we would like to discuss a problem of modeling personal interactions with
delay, and provide argumentation for the delay to be incorporated into the modeling, while in Section 2 we introduce the
model itself, and describe the meaning of variables to be used.

Models with time delays are quite often used to describe population dynamics, cf. e.g. a text-book by Gopalsamy [21]. It is
obvious that time delays can be always observed in natural environment: it takes some time for the signal to travel from one
cell to the other, the process of transcription of a protein also takes some time, cf. e.g. [22] or [23].

We find it reasonable and necessary to combine the philosophy standing over the approaches mentioned above. Con-
structing a mathematical model we always have to simplify described process. This implies that we need to take a decision
which parts of the described phenomena can be neglected and which not. Moreover, we need to choose a simplification le-
vel: either to describe a given process more precisely which would lead to a complex system of many equations with plenty
of parameters that hardly can be analyzed by mathematical tools, or to simplify the description and reduce the number of
variables/equations in order to give ourselves a chance for mathematical analysis and parameter identification. In the latter
case it is sometimes useful to introduce time delays into the system in order to reflect that some processes take significantly
more time than the others and to avoid more detailed descriptions.

As time delays can be observed even on the basic level of cellular interactions, we should also expect delays in interper-
sonal relationships. However, mathematical modeling in sociology and psychology is a rather young branch of applications,
and dynamical systems (discrete or continuous) that have been used to describe some aspects of such relationships are typ-
ically simple models without delay, cf. e.g. [3,4,5,6,7,12,13,15,16,17,24] in the context of romantic relationships, and also the
text-book by Gottman et al. [25] and the article written by Rey [11] focused on the prediction of marital dissolution on the
basis of such sort of models. Typically, discrete dynamical systems approach is used in this topic, cf. [4,25]. Continuous
dynamical systems in the description of romantic relationships has been introduced by Strogatz [16,26]. The idea of Strogatz
influenced many researchers to study different styles of romantic relationships with linear and non-linear influence/ effort
terms, cf. [5,7,11,12,13,15,17,24].

It is also worth to point that work by Strogatz also gave birth to a new branch of case study in which famous and well-
described historical couples as well as characters from literature and pop-culture undergo analysis of relationship dynamics,
cf. e.g. [12,14,27]. In frames of this approach one may find a broadened analysis of Petrarch’s platonic feelings toward mis-
tress Laura (true story which took place in 14th century), performed on the basis of facts extracted from historical records,
and also characteristics of such fictional couples as Jack Dawson and Rose Calvert (Titanic movie), Dan Gallagher and Alex-
andra ‘‘Alex’’ Forrest (Fatal Attraction movie) or Christian de Neuvillette and Roxane (Cyrano de Bergerac by Rostand).

Recently, time delays have been introduced to such systems in order to reflect real interpersonal relations better, cf.
[28,29,30] with the detailed discussion on introducing delays in [30]. The models presented and studied by Bielczyk et al.
[29,30] essentially follow the ideas of Strogatz, because the assumption is for the interaction between partners to be based
on linear interdependency with the time delay. On the other hand, linear modeling seems to be a far simplification for the
complex problem of dynamics of interpersonal relationships, and nonlinear models appear to be more accurate here, cf. e.g.
[5,8,9,10,11,12,13,14,17,25]. The nonlinear model with time delay in the influence terms was proposed and studied by Lion
and Ran [28]. In this paper the authors considered the model with a general form of the functions reflecting the influence of
the partner’s love on the dynamics of each person’s emotions and introduce time delays into it. They presented mathematical
analysis of the model focusing on the local stability and Hopf bifurcation with respect to the sum of the delays. The analysis
was performed under the assumption that, in the absence of any partner, the dynamics of each person is stable. Similar sta-
bility analysis can be found in [30], however in that paper all possible styles of romantic relationships were considered.

Among numerous ideas for developing Strogatz approach, there is another promising class of emerging models: some
researchers pay attention to conscious activities of partners who moderate actions in a way to obtain an optimal outcome
for themselves, from among all the given possibilities. In other words, partners in these models are described as intelligent
agents capable of making decisions instead of being driven only by emotions. For example, [5] contributed to the economic
theory of addictive behavior in a context of romantic relationships, by analysis of optimal control problem for a dyadic
dynamical system. Another example can be found in [11], where it is shown that, whenever partners are similar in terms
of emotional attributes, there is an optimal effort strategy leading to a stable and happy coexistence. This approach is inter-
esting especially due to the idea of so called second law of thermodynamics for sentimental relationships which means a
tendency for the initial feeling in the relationship to fade away with time if there is no prompt from agents, which must
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be consciously counteracted by the partners. However, there are certain limitations for this model. First, in this framework
the partners are supposed to share all personal traits, which is unlikely to happen in reality. Second, the assumption is for the
relationship always to start from a fiery feeling which is often untrue.

1.3. The proposed model

In the paper we follow the ideas of [29] enriched by adding reactivity to each other’s appeal to the model, but we also
consider a more compound nonlinear model. In both cases we would like to describe system dynamics for partners who
emotionally interact with each other, and there is a delay in the interaction involved.

There is a class of relationships we would like to describe, and certain limitations of the model. Primarily, we aim at
describing relationships between individuals who are involved in the relationship deep enough and are emphatic enough
to be able to involuntarily react to each other’s moods. In the analysis, the relationship can turn out to be stable or unstable
(fast breaking) and in that sense it not necessarily has to be long-lasting in order to undergo modeling.

Another assumption would be that partners should interact physically and emotionally on a daily basis, which means this
is not a long-distance relationship. Since we would like to model mutual impact on emotional states continuous, this regards
additional condition which is living together. That is for two major reasons:

(1) interplay of emotional states in partners has to be fluent in order to use ordinary differential equations. If the partners
are only dating, two problems arise: first, the media becomes a mediator in the relationship and there are additional
delays resulting from information transfer, like time spent to get access to internet and read emails, and second, emo-
tional interactions go along with meetings which are usually irregular in time.

(2) for the couple living apart, it becomes much easier to separate and wait for the other person to emotionally recover
whenever they find themselves in a negative state, which spoils the idea of coupled emotional dynamics.

Another assumption is that partners interact both by verbal and non-verbal communication, and also by common activities
which have a great impact on the development of the relationship in terms of understanding each other’s emotions and emo-
tional proximity [31,32]. This assumption is necessary to justify common value of delay for both partners in the model, it can
only result from emotional involvement, deep motivation and training.

The delays in the model do not come from information processing, as opposed to emotional reactivity. We neither mean
time necessary for receiving messages through media nor time spent on understanding partner’s statements. And as for emo-
tion-driven delays, it was previously mentioned that there is full spectra of primary and compound emotions that have im-
pact on the outcome mood which is then described as one-dimensional variable. Since for each person, regarding
circumstances, different emotions are formed with different delays, it is hard to reflect this fact in an analytically treatable
system. Thus, we decided to compose two variables: one representing all the primary and ‘‘fast’’ emotions (with very small
delay to stimuli that can be approximated by zero delay) and one representing all the delayed compound emotions.

For the delayed case, imposing constant delay simplifies the problem enough to be treatable although one cannot argue
that this is a very far simplification. However, this is a first, very important step on the way for the DET approach to develop
from numerically to analytically treatable systems. Another question is timescale of delay. We only consider couples who
strongly interact and are deeply emotionally involved, however the most appropriate value of delay for a given couple
can depend on mandane circumstances such as amount of working hours during the day and if the partners work together
or not. It is well known in psychology of emotion that intellectual engagement suppresses moods, thus emotional dynamics
of intellectually hard-working couples is naturally slower. In general, timescale for delay in this model is in range between
hours and days. If one had to give an example to the ongoing emotional processing, it could be:

‘‘Yesterday I did not want to bother you because you had a hard day at job and I was worrying about you, but today I
finally took time to think about your attitude and I have to tell you I very much dislike the way you called my Mum yesterday
morning.’’

‘‘I know we were arguing just yesterday but this afternoon I was biking home from work and suddenly it just came to my
mind that despite some small differences between us I am very happy with you.’’

In general, in this paper we are looking for mathematical description of conditions necessary for this class of relationships
to be stable. It is well known that if discrete time delay is introduced to the system in a manner typical for modeling of a
natural phenomena, this may lead to destabilization of steady states and cause delayed induced oscillations. In this paper
we discuss the possibility that discrete time delay have a stabilizing effect. Although it is known that if any stability switches
occur (and model parameters do not depend on time delay), the steady state would be eventually unstable if the delay is
sufficiently large (see [33]), but we have in mind social interactions, and therefore time delay should be bounded. For the
models presented in this paper there are two stability switches — from instability to stability at some critical delay s1

and to instability again for some s2 > s1. Hence, we can easily imagine the situation that s2 is out of the range of reasonable
delays and only the change at s1 can appear in reality yielding stabilization. We would like to emphasize that this stabilizing
effect is a result of inner dynamics of the system, not the external impact on it. Stabilization due to external influence is well
known in the control theory, cf. e.g. [34].

The paper is organized in a sandwich manner. In the next section, we present the family of linear models studied by
Bielczyk et al. [30]. Next, we propose more general class of linear models and explain the reason of studying such
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modification while focusing on one particular type of the model from that class. We also give and discuss an example of a
relationship described in such a model. Finally, we present the nonlinear model for which we observe similar stability
switches as in the linear model in study.

In the third section we turn to analysis and formulate a general theorem guaranteeing that the steady state for a system of
two differential equations can gain stability due to the presence of time delay.

In the last two sections we get back to sociology and focus on application of the proved theorem to the models of roman-
tic relationships proposed in the second section and provide with some numerical simulations. We also include general
implications of our account in Conclusions.

2. Romeo and Juliet model

In this paper we essentially follow the ideas of [16,26] where the changes of Romeo’s and Juliet’s love/hate in time are
described as a system of two linear ODEs. As Strogatz, we imply interpersonal dependency in the relationship by relating
states of the partners with each other but ignoring the explicit cooperation between partners which has been studied e.g.
by [35]. In other words, the analysis is based on the interplay between partners’ emotional states and does not concern their
conscious or subconscious activities. This dynamics is only driven by reactions, so the partners are not intelligent agents
here.

The signs of coefficients in such system specify the romantic styles of lovers. In the similar way Felmlee and Greenberg
described dyadic interactions in [6]. However, their system slightly differs from those considered by Strogatz. In the system
proposed by [6] some signs of coefficients are fixed. The idea of introducing delay to the model proposed by Strogatz comes
from [29,30]. However, the models studied by [29,30] slightly differ from each other. We explain this difference below, while
presenting the models.

2.1. Linear model

At first, we present a model of love affairs dynamics proposed by [16,26] and also by [6]. This model reads
_xðtÞ ¼ a1xðtÞ þ b1yðtÞ;
_yðtÞ ¼ b2xðtÞ þ a2yðtÞ;

�
ð2:1Þ
where xðtÞ denotes Romeo’s emotions (love if xðtÞ > 0, hate if xðtÞ < 0) for Juliet at time t, while yðtÞ denotes Juliet’s love/hate
for Romeo at time t. The coefficients ai; i ¼ 1;2, reflect the influence of their own emotions on themselves, while bi describe
the direct effect of their love on the partner. Different signs of the coefficients ai; bi; i ¼ 1;2, describe different romantic
styles. More precisely, Strogatz claimed that for a1; b1 > 0 Romeo is an eager beaver (meaning that Romeo is encouraged
by his own feelings as well as Juliet’s feelings for him), for a1 > 0; b1 < 0 he is a narcissist (who wants more of what he feels
but retreats from Juliet’s feelings), for a1 < 0; b1 > 0 he is a cautious (or secure) lover (that is Romeo retreats from his own
feelings but is encouraged by Juliet’s one) and for a1; b1 < 0 he is a hermit (that is Romeo retreats from his own feelings as
well as Juliet’s one), cf. [15].

In the papers [7,24,12,13] the notion of appeal was included to the model. These authors distinguished between reaction
to the partner’s emotions and partner’s appeal, and introduced different variables describing these two kinds of reactivity.
Hence, the more general linear model with appeal can be considered
_xðtÞ ¼ a1xðtÞ þ b1yðtÞ þ r1A2;

_yðtÞ ¼ b2xðtÞ þ a2yðtÞ þ r2A1;

�
ð2:2Þ
where A1;A2 are constant coefficients reflecting the appeal of Romeo and Juliet, respectively and r1 describes Romeo’s reac-
tion to Juliet’s appeal and r2 – reaction of Juliet to Romeo’s appeal. It can be easily noticed that the mathematical analysis of
the model (2.2) is identical as of (2.1), the only difference is the location of the steady state, that is the point (0,0) for (2.1) and

b1r2A1�b2r1A2
a1b2�a2b1

; a2r1A2�a1r2A1
a1b2�a2b1

� �
for (2.2) (assuming that a1b2 – a2b1). This extension of the Strogatz model is interesting especially

because it enables to derive properties which formally describe the process of falling in love: in frames of this approach it is
possible to give an example of a system with partners starting from indifference and tending toward a positive plateau. On
the other hand, the appeal may play the crucial role in the socio- and psychological interpretation of the model, and for this
reason its impact on evolution of a relationship should not be ignored.

There is also another possible extension of the Strogatz model which is another step toward better description of real
relationships evolution. A class of models studied by Bielczyk et al. [30] is also constructed on the basis of Eq. (2.1), assuming
that at least one of the reaction terms a1x; b1y;a2y; b2x is delayed, while the others are instantaneous. This class of models
reads
_xðtÞ ¼ a1xðt � d11sÞ þ b1yðt � d12sÞ;
_yðtÞ ¼ b2xðt � d21sÞ þ a2yðt � d22sÞ;

�
ð2:3Þ
where dij ¼ 0 when the reaction is instantaneous, while dij ¼ 1 when it is delayed. These equations are constructed on a basis
of the Strogatz model, however xðtÞ and yðtÞ variables has been redefined as a ‘‘level of satisfaction from the relationship’’.
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This is because satisfaction is a one-dimensional variable, more precise than ‘‘happiness’’ or ‘‘level of emotions’’, and re-
stricted to a part of emotional life referring only to the relationship.

We also associate the desired stability in the relationship with a marriage or other long-term relationship. This means we
assume that time scale for stability we are describing is at least several years. This fact does not come out explicit in the
analysis though.

The analysis presented in [30] is focused on the possibility of stability switches due to increasing delay. An interesting
result is obtained in that paper: multiple stability switches are possible only when at least one of the partners reacts with
delay to their own state. As for the other classes of models, where both ‘‘self-reactions’’ are instantaneous, there can appear
at most one stability switch. More precisely, if the steady state is stable for s ¼ 0, then it remains stable for all positive delays
or it can lose stability for some threshold delay scr and cannot regain it for larger delays, while if it is unstable for s ¼ 0, then
it remains unstable for all positive values of s.

In this paper, we combine the two possibilities for extension of the Strogatz model introduced in Eqs. (2.2) and (2.3), with
xðtÞ and yðtÞ interpreted as a level of satisfaction from the relationship. This yields a class of models of a general form
_xðtÞ ¼ a1xðtÞ þ axðt � sxxÞ þ b1yðtÞ þ byðt � sxyÞ þ r1A2;

_yðtÞ ¼ a2xðtÞ þ Axðt � syxÞ þ b2yðtÞ þ Byðt � syyÞ þ r2A1;

�
ð2:4Þ
where parameters ai; bi; r1;Ai; i ¼ 1;2, and a; b;A;B can have arbitrary signs (although A1 and A2 are supposed to be positive),
as in the case of models considered by Strogatz, and delays can have different positive values. People indeed react instanta-
neously on emotional stimuli, but they can also make corrections to their level of satisfaction in a result of time delayed
reconsideration, thus in our opinion such a description better reflects the human nature than a model given by Eq. (2.2).

The model introduced above is too general to analyze though. In order to attribute personality traits to partners and de-
scribe a certain situation, at least signum shall be determined for all the coefficients in the model. Furthermore, even though
extension of a simple linear model by adding a time delay seems to be only a slight change, there are certain constraints for
the model to be analytically treatable afterward, cf. [29,30]. It is hard to pursue calculations if there is more than one non-
zero value of delay in the system, thus we shall restrict values of delay to be either 0 or s.

Even after implementation of these constraints, we still have 38 substantially different versions of the model to treat
(since each of 8 coefficients in (2.4) may be either equal to zero, positive or negative). Theoretically, it gives a full spectra
of models, but some of the combinations of coefficients do not make sense if we are looking for conditions of stability. In
an example, at least one of the coefficients must be negative, otherwise the system does not gain stability at all. We also
assume at least ai; bi; i ¼ 1;2, to be non-zero, because the partners should be reactive and prompt to emotional stimuli such
as their own and the partner’s temporary state. For a; b;A;B there is no such constraint because an ability to correct some-
one’s own state after a period of time depends on a level of deliberation of the person, and therefore describes a personal
trait.

In fact, we are able to analyze every system that fulfills the above requirements. This means we may construct a number
of systems by describing a given couple in a language of reactivities to themselves and to each other, which provides a room
for further research. In order to present capabilities which appear in a result of this approach, we pursue a full analysis of an
exemplary system.

In the story we would like to model, Romeo is in deep love with Juliet, he gets excited by Juliet’s love for him, and further
is spurred on by his own affectionate feelings for her [citation from 26]. In a result, we assume a1; b1 > 0. However, imme-
diate positive reactions of Romeo are reconsidered after some time, and his reactions to Juliet’s states are negative in the end
(his level of satisfaction drops whenever Juliet is satisfied and the opposite).

On the contrary, Juliet is a fickle lover. The more Romeo loves her, the more Juliet wants to run away and hide [again cited
from 26], but on the other hand, her own level of satisfaction intensifies itself which means Juliet has an insight into her own
state and whenever she realizes herself to be satisfied, it makes her even more satisfied and the opposite, hence a2 < 0 and
b2 > 0.

Thus, we describe the couple using a system of two ordinary differential equations with time delay
_xðtÞ ¼ a1xðtÞ þ b1yðtÞ � byðt � sÞ þ r1A2;

_yðtÞ ¼ �a2xðtÞ þ b2yðtÞ þ r2A1;

�
ð2:5Þ
where ai; bi; ri; i ¼ 1;2; b;A1 are positive parameters, while A2 is supposed to be negative. Notice, that the parameters
a1; bi; i ¼ 1;2, and b in (2.5) are absolute values of the parameters in (2.4). Initial data ðxðtÞ; yðtÞÞ 2 Rþ for t 2 ½�s;0� reflect
emotions at the initial time interval.

Looking at classic literature, this model well describes relationship of Martin Eden and Ruth Morse, main characters of a
masterpiece ‘‘Martin Eden’’ by London and Eden [36]. The plot concentrates on story of a young mariner, Martin, and a young
lady from higher class, Ruth. Martin was truly affectionate with Ruth and impressed by her education and manners, whereas
Ruth was taught from childhood to be calculated and self-centered, treated Martin disrespectfully and thought of messing
with a man from lower class as a mercy. He was positive about his own and her feelings, and he was concerned about Ruth’s
level of satisfaction more than about his own, and he also used to think a lot about Ruth’s states and not about his own. The
more unsatisfied Ruth was in the past, the more positive and motivated to act Martin was becoming. Nevertheless, Martin
was not attracted by Ruth’s appeal since she was not an attractive woman in a classic sense of the word; she only impressed
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him with intellect and manners. On the other hand, Ruth felt cooled down anytime Martin was showing her his satisfaction
and happiness. She was much concerned about her own satisfaction and did not use to deliberate the past. After Martin
decided to educate, and then became a famous writer and a bitter person disappointed by other people at the same time,
Ruth’s level of satisfaction immediately increased. On the other hand, Martin was very attractive physically, sociable and
popular in his mariner environment, and his wild and manly appeal had a great impact on Ruth. Thus, our model can well
describe such a situation, especially when b1 > a1 and a2 > b2.

In the following we provide analysis of stability conditions for the above model. As mentioned previously, this is one of
numerous possibilities which may be described in frames of the introduced approach, however there is no room for analysis
of all the systems in this paper.

2.2. Nonlinear model

As we have explained in Introduction, constructing linear models is not the most relevant approach for the description of
interpersonal relationships, since they can be of nonlinear nature. This means linear description has only local character, and
is valid only near the steady state.

As previously, there is a bunch of models to examine as soon as we take into account nonlinear terms. From psycho- or
sociological point of view, extending the model by terms of a form xðtÞyðtÞ or xðt � sÞyðt � sÞ is most appropriate because
these terms describe reaction to a combination of two states at the same time. It is also worth to consider terms of a form
xðtÞxðtÞ and xðt � sÞxðt � sÞ, because they are always of the same signum and may describe an always positive or always neg-
ative reaction to a partner, as well as reaction of a person to their own state, which is always positive (self-activating atti-
tude) or always negative (self-abasement attitude).

Here, we also choose an exemplary nonlinear system in which delay has a stabilizing effect. The model reads
_xðtÞ ¼ �axxðtÞ þ gx2ðtÞ þ bxyðt � sÞ � cxxðtÞyðtÞ þ r1A2;

_yðtÞ ¼ byxðtÞ � ayyðtÞ þ cyxðtÞyðtÞ þ r2A1;

(
ð2:6Þ
with positive coefficients.
In this relationship, Romeo reacts negatively to his own states and positively to Juliet’s states, although with delay. He is

also negative toward their joint state xðtÞyðtÞ which means his level of satisfaction increases whenever one of them feels
unsatisfied and decreases whenever they are both satisfied or unsatisfied. This may contribute to a typical manly attitude
which makes Romeo feel responsible for the relationship and obliges himself to solve problems like difference in level of
satisfaction. We are talking about reactions which do not have to be conscious especially when they are instantaneous as
this one. Romeo also has an egoistic feature represented by a factor g, which describes his increase of satisfaction as a re-
sponse to all his states. It gives more compound view at Romeo’s personality which is rather self-centered. It also reflects
results of a research by Wood [37] suggesting that for men, relationships are not as central as for women.

On the contrary, Juliet (her emotions are described by the function yðtÞ) reacts positively to similar state of the partner
(both positive or both negative), which is described by the term xðtÞyðtÞ. This also means she reacts negatively to lack of this
conformity between partners which can be described as co-feeling factor. If we assume both Juliet’s and Romeo’s negative
states to be a conflict, this suggests for Juliet to display positive communication attitude in such conditions [38]. At the same
time analysis of her own state cools down her level of satisfaction (she reacts with negative coefficient which makes her re-
act positively to her own lack of satisfaction), while she reacts positively on her partner positive state and negatively on his
negative state. This can be described as cautious lover attitude, cf. also [29,30].

A good example of such a couple can be Rhett Butler and Scarlett O’Hara, main characters of ‘‘Gone with the Wind’’ by
Mitchell [39]. In this world-wide known novel, and also movie, Rhett was a self-centered, but deliberate man whereas Scar-
lett was an impulsive, but fragile and cautious lover. Analysis of this model can be found in Section 4.

3. General theorem

In this section we present mathematical approach that can be used in analysis of such models as (2.3), (2.5), and (2.6). We
prove that in the cases we study there is a range of reasonable values of delay that lead to stabilization of the system.

Typically, considering local stability of a steady state it is enough to study a linearized system and the stability of the zero
steady state which yields to the characteristic function (a quasi-polynomial in this case). For any system of two ordinary dif-
ferential equations with one discrete delay its characteristic function has a general form
WðkÞ ¼ k2 þ a1kþ a0 þ ðb1kþ b0Þe�ks þ ce�2ks; ð3:1Þ
where a0; a1; b0; b1; c are arbitrary constants. To simplify the analysis we assume c ¼ 0 in this paper. However, due to the con-
tinuous dependence of eigenvalues on the model parameters, cf. e.g. [40], the results are also valid for sufficiently small val-
ues of c. In this section by the steady state we always understand the zero steady state of a linear (linearized) system. By
stability switch we understand the change of stability of the steady state from stable to unstable or reverse. For nonlinear
systems the occurrence of stability switch is typically associated with Hopf bifurcation, which means the appearance of peri-
odic orbits that can be stable or unstable, depending on the type of bifurcation.
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One of the mathematical tools that can be used to prove stability or instability is the Mikhailov criterion, cf. e.g. [41].

Lemma 1 (Mikhailov criterion). Assume that W has no pure imaginary roots. Then, the steady state of the system with the
characteristic equation of the form (3.1) is locally stable iff
D06x<1 arg WðixÞ ¼ p:

Lemma 1 implies that to study stability it is enough to calculate the total change of the argument of the vector WðixÞ

when omega increases from 0 to 1. In more general case, when the characteristic function has the form
WðkÞ ¼ PðkÞ þ QðkÞ with P being a polynomial of the n-th degree and Q is a linear combination of functions
kk expð�kskÞ; k ¼ 0; . . . ;n� 1, the condition guaranteeing local stability reads
D06x<1 arg WðixÞ ¼ p
2

deg P ¼ np
2
:

Before discussing a stabilizing effect of time delay, we give a short review of the cases in which the change of stability
cannot occur or time delay destabilize the steady state. Notice that due to the continuous dependence of the roots of
WðkÞ on the coefficients, for the occurrence of a stability switch it is necessary that a pair of purely imaginary roots �ix
of W appears. Thus, there should exist a positive x such that
WðixÞ ¼ 0) ðixÞ2 þ a1ixþ a0

��� ���2 ¼ b1ixþ b0j j2:
Substituting x by a
ffiffiffi
x
p

we easily get
FðxÞ ¼ x2 þ ða2
1 � 2a0 � b2

1Þxþ a2
0 � b2

0 ¼ 0:
Stability switches can occur only if there exists at least one positive root �x of F. Moreover, the sign of the derivative of F at
points �x determines the direction of movement of the roots of W in the complex plane with increasing delay, cf. [33]. This
means that if F0ð�xÞ > 0, then the respective pair of roots of W crosses the imaginary axis from the left to the right-hand com-
plex half-plane, while if F 0ð�xÞ < 0 from the right to the left-hand side. Therefore, stability might be gained only if F 0ð�xÞ < 0.

Lemma 2. If a0j j < b0j j, then

� if the steady state is unstable for s ¼ 0 (i.e. either a0 þ b0 < 0 or a1 þ b1 > 0), then it remains unstable for every s > 0;
� if the steady state is stable for s ¼ 0 (i.e. a0 þ b0 > 0 and a1 þ b1 < 0), then there exists scr > 0 such that the steady state is sta-

ble for 0 6 s < scr and is unstable for s > scr , implying Hopf bifurcation at s ¼ scr if the system is nonlinear.
Proof. The condition a0j j < b0j j implies that Fð0Þ < 0, thus F has a unique positive root x0 and F0ðx0Þ > 0. Therefore, the unsta-
ble steady state cannot gain stability and the stable steady state loses stability at the first critical value of delay for which the
pair of purely imaginary eigenvalues exists and cannot gain it again. For nonlinear systems these conditions are sufficient for
Hopf bifurcation. h
Lemma 3. If ða2
1 � 2a0 � b2

1Þ
2
< 4ða2

0 � b2
0Þ or a2

1 > 2a0 þ b2
1 and a0j j > b0j j, then the stability switches cannot occur.
Proof. It is easy to see that the assumptions imply that F has no real positive roots where the stability switch can occur. h
Corollary 1. Stability switches may occur only if a0j j > b0j j (i.e. Fð0Þ > 0), a2
1 < 2a0 þ b2

1 and ða2
1 � 2a0 � b2

1Þ
2
> 4ða2

0 � b2
0Þ.
Proof. Stability switches may occur only if there exist two positive roots of F. This function is a quadratic polynomial of x,
and therefore the existence of two real positive roots is equivalent to the condition a2

0 � b2
0 > 0, a2

1 � 2a0 � b2
1 < 0,

ða2
1 � 2a0 � b2

1Þ
2 � 4ða2

0 � b2
0Þ > 0. h
Lemma 4. If for s ¼ 0 the steady state is a saddle point, then the stability switches cannot occur.
Proof. In this case we have a0 þ b0 < 0. We use the Mikhalov Criterion stated in Lemma 1 to prove instability of the steady
state for all s P 0. Let us denote
WrðxÞ ¼ ReðWðixÞÞ ¼ �x2 þ a0 þ b0 cosðxsÞ þ b1x sinðxsÞ;
WiðxÞ ¼ ImðWðixÞÞ ¼ a1x� b0 sinðxsÞ þ b1x cosðxsÞ:

ð3:2Þ
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Using the Mikhailov Criterion we study the change of argument of the vector WðixÞ for x increasing from 0 to þ1. We see
that Wrð0Þ ¼ a0 þ b0 < 0 and Wið0Þ ¼ 0, that is arg Wð0Þ ¼ p and
sin arg WðixÞ ¼ a1x� b0 sinðxsÞ þ b1x cosðxsÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2

r þW2
i

q ! 0;

cos arg WðixÞ ¼ �x2 þ a0 þ b0 cosðxsÞ þ b1x sinðxsÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2

r þW2
i

q ! �1
as x! þ1. Therefore, arg WðixÞ ! p and the total change is equal to pþ 2lp� p ¼ 2lp – p; l 2 Z, which implies that the
steady state is unstable. h

Let the assumptions of Corollary 1 be fulfilled and denote by 0 < x0 < x1 zeros of F with xi ¼
ffiffiffiffi
xj
p

; j ¼ 0;1. We have
WðixjÞ ¼ 0 for j ¼ 0;1, and this yields
sinðxjsjÞ ¼ xj

b1x2
j þ a1b0 � a0b1

b1x2
j þ b2

0

; cosðxjsjÞ ¼
ðb0 � a1b1Þx2

j � a0b0

b1x2
j þ b2

0

for j ¼ 0;1:
This system has unique solutions sj0 2 ½0;2p=xjÞ for j ¼ 0;1. Then we have a sequence of critical values sjn
� �

n2N such that
sjn ¼ sj0 þ
2np
xj

; j ¼ 0;1 and n 2 N:
The inequality x1 > x0 implies that roots of WðkÞ cross imaginary axes more often from the left to the right-hand complex
half-plane than in the opposite direction. Thus, eventually the steady state would be unstable for large s. Stability switches
may occur only in two cases

1. the steady state is stable for s ¼ 0 and s10 < s00 < s11 (the first inequality is always fulfilled in this case) or
2. the steady state is an unstable node or unstable focus for s ¼ 0 and s00 < s10.

Now we formulate a theorem for a particular case when the second possibility occurs.
Theorem 1. Assume that
a1 < 0; a0j j > b0j j; a0 þ b0 > 0; a2
1 < 2a0 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b0

a0

	 
2
s0

@
1
A: ð3:3Þ
Then

(i) if b0 < 0 and a2
1 < 8 b0j j=9, then for any a0 2 �b0;8ðb0=ð3a1ÞÞ2

� �
and b1 sufficiently close to 0 stability switches occur and

the first switch is for sc <
3 a1j j
2 b0j j

;
(ii) if b0 > 0 and a1j j < 8

ffiffiffiffiffi
a0
p

=ð9p2Þ, then for any b0 2 ja1j
ffiffiffiffiffi
a0
p

;8a0=ð9pÞð Þ and b1 sufficiently close to 0 stability switches occur
and the first switch is for sc < 3p=ð2 ffiffiffiffiffi

a0
p Þ.

Proof. We present only the idea of the proof here. The full proof is included as Appendix A.
Conditions (3.3) imply that for s ¼ 0 the steady state is unstable and the assumptions of Corollary 1 hold for sufficiently

small b1. Thus, stability switches may occur. We show that the steady state is locally asymptotically stable for some �s > 0.
Notice also, that a0j j > b0j j together with a0 þ b0 > 0 imply a0 > 0.

Due to continuous dependence of roots of the characteristic function W on its parameters it is enough to prove the
theorem for b1 ¼ 0. As in the proof of Lemma 4 we use the Mikhalov criterion. We see that arg Wð0Þ ¼ 0 and Expressions
(3.2) imply that the total change of the argument arg WðixÞ is equal to pþ 2lp; l 2 Z. We show that Wr is decreasing. In the
case (i) we find �x such that WiðxÞ > 0 for all x 2 ð0; �xÞ as well as Wrð �xÞ < 0. This yields that the change of arg WðixÞ for
x 2 ð0;þ1Þ is p, so the steady state is stable due to the Mikhalov criterion. In the case (ii) we show that there exits �x such
that Wrð �xÞ ¼ 0 and Wið �xÞ > 0. This, together with the monotonicity of Wr , yields that the change of arg WðixÞ for
x 2 ð0;þ1Þ is p, so the steady state is stable due to the Mikhalov Criterion. The sketch of the Mikhailov hodographs, that is
the curves that are drawn by the vector WðixÞ when x increases from 0 to 1, are presented in Fig. 1. h

4. Application of general theorem

Now, we apply General Theorem proved in the previous section to show stability switches for the systems we are inter-
ested in, that mean Eqs. (2.5) and (2.6), and particular sets of parameter values. In the case of model (2.5) we have an unsta-
ble steady state for delays equal to and near 0, this steady state gains stability at the first threshold value of delay and loses it
at the next critical value.



Fig. 1. The sketch of Mikhailov hodographs in the case (i) and (ii) in the left and right-hand graphs, respectively.
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The characteristic function for Eqs. (2.5) has the following form
Fig. 2.
portrait
better t
this val
WðkÞ ¼ k2 � ða1 þ a2Þkþ a1a2 þ b1b2 � b2b expð�ksÞ
and choosing parameters values as
a1 ¼ 0:2; b1 ¼ 1:4; b ¼ 1:25; a2 ¼ 0:2; b2 ¼ 0:4; r1 ¼ 2; r2 ¼ 2; A1 ¼ 1; A2 ¼ �1 ð4:1Þ
we get a1 ¼ �ða1 þ a2Þ ¼ �0:4; a0 ¼ a1a2 þ b1b2 ¼ 0:6; b0 ¼ �b2b ¼ �0:5; b1 ¼ 0 and the steady state is ðx; yÞ ¼ ð7;4Þ. Note
that in linear model appeal terms do not affect the stability of the steady state but only the value of the steady state. From
mathematical point of view it is not surprising as appeal is modeled as a source term. This allows to move from (0,0) point
and start love affair, but it cannot affect the stability of the steady state, at least in the linear model. This means that reactions
on his/her and on partners’ feelings determines the stability of the steady state and the appeal terms affect only the position
of the steady state. It is an interesting note since it seems as far as we analyze simply structured relationships that can be
described on the basis of linear interplay of actions-reactions, appeal does not have impact on stability of the relationship. It
can contribute to recent experimental findings on the impact of physical attractiveness on marriage quality [42] which sug-
gest that level of attractiveness usually affects only the initiation of the relationship, as is not predictive in terms of marriage
duration (stability).
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Solutions to system (2.5) with parameters given in (4.1) for different values of time delay, below and around the first critical value s1. The phase
of system (2.5) for s ¼ 0 is presented on the lower left hand-side picture. The Romeo’s emotion was shifted by 7 and Juliet’s one by 4 to display

he behaviour of the solutions around the steady state ð7;4Þ. We may observe the relationship to be unstable below a certain value of delay. Above
ue, it stabilizes. This means some minimum level of sloth in Romeo is beneficial for the relationship.
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But the key feature of a linear system with such parameters we may observe is that if R’s reaction is delayed for a very
short time, the relationship is unstable. There exists a certain value of delay above which the relationship stabilizes which
means some minimum level of sloth in R is beneficial for the relationship. However, if delay is big enough, the relationship
destabilizes again and for all times, which means too much sloth to be destructive to the relationship as well. In Figs. 2 and 3
the behavior of the solution to (2.5) for different values of time delay is presented. For s ¼ 0 (see the upper left hand-side
picture for graphs of the solutions and the lower left hand-side picture for the ‘‘phase portrait’’, meaning the dependence
between the values of R and J variables in the paper) the steady state is unstable and the solutions oscillate with increasing
amplitude.

It can be easily checked that the assumptions of Theorem 1 are fulfilled. In this case there exist two critical values of time
delay: s1 � 0:81 and s2 � 2:36. For s1 the steady state gains stability. For s < s1 the amplitude of oscillation increases with
time while for s > s1 oscillations are dumping. For s2 the steady state loses stability. The amplitude of oscillations increases
with time for s > s2. For positive s < s1 the amplitude of oscillations is growing slower and slower, eventually oscillations
become stable, and then start to be dumping as the steady state gains stability (in the middle graphs of Fig. 2 this situation is
illustrated for s ¼ 0:82 and in the right hand-side graphs of Fig. 2 for s ¼ 1:2). When s increases further, the convergence to
the steady state is faster and oscillations disappear. Oscillations appear again when s approaches s2 (see the left-hand side
and middle graphs of Fig. 3 for illustration of this situation for s ¼ 2:2 and 2:363, respectively) and the steady state becomes
unstable again and remains unstable for all s > s2 (see the right hand-side of Fig. 3 for illustration of the situation for
s ¼ 2:6).

For the nonlinear model (2.6) the dynamic is more diverse. The system has in general up to three steady states. If the ap-
peal terms are equal to 0 we may deduce that if D ¼ ðcxby � axcy � gayÞ2 � 4gcxðaxay � bxbyÞ > 0, then there exist three stea-
dy states: ð0;0Þ; ð�x1; �y1Þ and ð�x2; �y2Þ. On the other hand, if D < 0, there exists only one steady state ð0;0Þ. It can be noticed, that
the trivial steady state is locally asymptotically stable for s ¼ 0 if axay > bxby. In this case the steady state remains stable for
all s > 0 (because the auxiliary function FðxÞ ¼ x4 þ ða2

x þ a2
yÞx2 þ ðaxayÞ2 � ðbxbyÞ

2 has no positive roots). If the inequality
is reverse, then the trivial steady state is a saddle point for s ¼ 0 and due to Lemma 4 it remains unstable for all s > 0. How-
ever, for non-zero appeal terms the situation is much more complex since in general we have to find roots of a cubic poly-
nomial to calculate the steady state.

To illustrate the dynamics of this model we have chosen the following set of parameters:
Fig. 3.
was shi
again a
ax ¼ 1; ay ¼ 2; bx ¼ 0:5; by ¼ 0:2; cx ¼ 1:26; cy ¼ 0:4;

g ¼ 1:28; r1 ¼ 0:92; r2 ¼ 1; A1 ¼ 2; A2 ¼ 1:
ð4:2Þ
In this case we have only one positive steady state A ¼ ð2;2Þ. Note that in the nonlinear models the appeal terms may not
only influence the value of steady state, but also the existence and stability of steady states. It may contribute to a common
belief that complicated relationships, based on various forms and levels of interactions, correlate with high level of attraction
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Fig. 4. Solution to (2.6) with initial data xð0Þ ¼ 0; yð0Þ ¼ 0 and for different values of time delay.
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of the partners toward each other. Both of these conditions could be associated with high level of hormones which affect
both instinctive reactions as attraction and subjective perception as satisfaction.

We may observe that depending on the value of delay we may obtain lack of stability, convergence to the steady state or
oscillatory behavior. Exemplary simulations are shown in Figs. 4,5,6.

Linearizing system (2.6) around the steady state C leads to a linear system
_xðtÞ ¼ xðtÞ � 1:2yðtÞ þ 0:5yðt � sÞ;
_yðtÞ ¼ xðtÞ � 0:6yðtÞ:

�
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Fig. 6. Solution to (2.6) with initial data xð0Þ ¼ 0; yð0Þ ¼ 0 and for different values of time delay.
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Thus, the characteristic function reads
WðkÞ ¼ k2 þ 0:4kþ 0:6� 0:5e�ks:
It can be easily checked that the assumptions of Theorem 1 are fulfilled. In this case there exist two critical values of time
delay: s1 � 0:81 and s2 � 2:36. For s1 the steady state gains stability. The Hopf bifurcation occurs at this point and is sub-
critical. For s2 the steady state loses stability and the Hopf bifurcation occurs again. The stability switches that occur are pre-
sented in Figs. 4,5,6. We see that for small s solutions to (2.6) tend to1 (see the upper left-hand side picture of 4). For lager s
solutions begin to oscillate around the steady state ð2;2Þ (see the upper middle picture of Fig. 4 for the graph of exemplary
solutions and the upper right-hand side picture of Fig. 4 for the phase portrait). When time delay parameter approaches the
first critical value s1, the amplitude of oscillations decreases (see lower pictures of Fig. 4, the right-hand side picture is a
phase portrait for s ¼ 0:8). Next, if s > s1, solutions converge to ð2;2Þ (see the upper pictures of Fig. 5). When s is closer
to the second critical threshold of s, namely s2, oscillations around ð2;2Þ appear again (see the lower pictures of Fig. 5).
For s > s2 the amplitude of oscillations increases with increasing time. The solutions go to 1, eventually (compare Fig. 6).

5. Conclusions

In the paper we introduced a novel idea of incorporating delay into classical model of Strogatz [16,26], and we studied
two models of interpersonal relationships with time delay. The first model is linear and essentially follows the idea of
[16,26], while the latter is nonlinear and more complex in its form.

We attempt to model relationships in a way to obtain dynamics consistent with intuition and experience from real life,
however statement that these are only examples from a broad range of possibilities, is true. We hope this can be an inspi-
ration for a further research and exploitation of possibilities provided by Eq. (2.4).

In both cases, we assume for one of the partners to react instantaneously to the other partner but reconsider his/her
immediate reaction after some time (and the other partner is instant is their reactions). This is a example and many other
configurations of delayed and instant terms are possible.

We have shown that considerable time delays involved in such models can bring stability to an unstable steady state
which means the systems unstable without time delay can gain stability for certain range of delays. This is an important
result since it mathematically justifies a range of intuitive phenomenas in social psychology (or psychology of relationships).

First, it shows that even positive emotional reactivity can lead to destabilization of the relationship in some cases, thus
reflecting each other’s moods (personal traits expressed by positive model coefficients) is not a sufficient condition for the
relationship to be stable. This is consistent with a common situation when two persons of a great empathy get together, but
for some vague reasons they cannot get on well with each other. Our results show it is not only important to react to each
other, but also to keep a certain range of time necessary for some of compound emotions to form.

Second, it shows that making corrections to the level of deliberation in the relationship without even trying to change
personal traits in partners (which is hard and time costful in real therapy) can cause it gains stability. Mind that this math-
ematically justifies the sense of working on communication in the relationship. With time passing by, most of successful cou-
ples learns each other’s emotions and works out reactivity patterns, with emphasis on the time of reaction, and here we
suggest explanation for why this can really improve the relationship stability.

Third, it shows how the relationship can arise from a long-term acquaintance or friendship, where future partners have a
contact and work out the communication patterns. This is because from extending the simple model with delay of a form
(2.3) with appeal terms is a new feature of the system, which may hence start from indifference of both partners and reach
a nonzero steady point which well describes a development of the relationship.

All these three conclusions from our account are also consistent with the common belief that in real life immediate emo-
tional reactions can lead to unwanted effects and it is beneficial to reconsider situation in order to make correction to one’s
level of satisfaction, cf. [43]. However, ability to take time for deliberation is a personal trait. In the analysis, it comes out that
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time consumed for the deliberation cannot be too long in order to bring good effects. It is consistent with daily experience
since overdoing deliberation can lead to breakup.

Last but not the least, our findings are also consistent with statement of classical psychology, in which relationship
dynamics is described as eternal trade-off between approach and avoidance as a natural mechanism for shaping interper-
sonal relations, including romantic feelings, cf. [44].
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Appendix A

Here we present the full proof of Theorem 1.

Proof. In the proof we assume b1 ¼ 0. In Fig. 7 the idea of choosing �x in both cases is illustrated.
The case (i). Let us recall that b0 < 0 in this case. Define
�s ¼ 3 a1j j
2 b0j j

and �x ¼
ffiffiffi
8
p

3
b0j j
a1j j

:

For s ¼ �s, we have
W 0
rðxÞ ¼ �2xþ b0j j�s sinðx�sÞ 6 xð�s2 b0j j � 2Þ ¼ x

9a2
1

4jb0j
� 2

	 

< 0
since sin x�sð Þ 6 x�s and a2
1 < 8jb0j=9. Notice that
W 0
ið0Þ ¼ � a1j j þ b0j js > 0; for s > ja1j

jb0j
¼ a1

b0
:

This means that for s ¼ �s the equality WiðxÞ > 0 holds for some open interval ð0; x̂Þ, where x̂ > 0 depends on �s.
Now, we estimate WiðxÞ in the following way
WiðxÞ ¼ � a1j jxþ b0j j sinðxsÞP � a1j jxþ b0j j xs�x3s3

6

	 

;

independently of s. Hence,
Wið �xÞP �x b0j j�s� a1j j �
b0j j�s3 �x2

6

	 

:

It can be easily seen that WiðxÞ > 0 for x 2 ð0; �xÞ since �x2 ¼ b0j j�s� a1j jð Þ 6
b0j j�s3.

It remains to prove that Wrð �xÞ < 0. In fact, a simple calculation for s ¼ �s yields
Wrð �xÞ ¼ � �x2 þ a0 þ b0 cosð �x�sÞ ¼ �8b2
0

9a2
1

þ a0 � b0j j cos
ffiffiffi
2
p� �

< �8b2
0

9a2
1

þ a0 < 0
due to the assumptions.
The case (ii). Let us recall that b0 > 0 in this case. Define
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�s ¼ 3p
2
ffiffiffiffiffi
a0
p and �x ¼

ffiffiffiffiffi
a0
p

;

which implies �x�s ¼ 3p
2 .

The function cosine is decreasing on ð0;pÞ, and therefore for x < p=�s the function Wr for s ¼ �s is decreasing as a sum of
two decreasing functions. We also have
W 0
rðxÞ ¼ �2xþ b0s sinðxsÞ 6 �2xþ b0s
for any s. This implies that for x > b0s=2 we have W 0
rðxÞ < 0. Thus, for s ¼ �s we have Wr decreasing on 0; p�s

� �
and on

b0�s
2 ;1

� �
. However,
b0�s
2

<
p
�s

since b0 <
2p
s2 ¼

8a0

9p
:

Thus, for s ¼ �s the function W 0
rðxÞ is decreasing for all x > 0. Simple calculation yield
Wið �xÞ ¼ � a1j j
ffiffiffiffiffi
a0
p

þ b0 > 0 and Wrð �xÞ ¼ �a0 þ a0 ¼ 0;
due to the fact that �x�s ¼ 3p=2. h
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